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THE CHROMATIC NUMBER OF KNESER HYPERGRAPHS 

N. ALON, P. FRANKL, AND L. LOVASZ 

ABSTRACT. Suppose the r-subsets of an n-element set are colored by t colors. 
THEOREM 1.1. If n > (t - 1)(k - 1) + k * r, then there are k pairwise 

disjoint r-sets having the same color. This was conjectured by Erd6s [E] 
in 1973. 

Let T(n, r, s) denote the Turin number for s-uniform hypergraphs (see ?1). 
THEOREM 1.3. If e > 0, t < (1-e)T(n, r, s)/(k-1), and n > no(e, r, s, k), 

then there are k r-sets A1,A2,...,Ak having the same color such that 
Ai nfAjI < s for all 1 < i < j < k. If s = 2, e can be omitted.- 

Theorem 1.1 is best possible. Its proof generalizes Lov6sz' topological proof 
of the Kneser conjecture (which is the case k = 2). The proof uses a general- 
ization, due to Bariny, Shlosman, and Sziics of the Borsuk-Ulam theorem. 

Theorem 1.3 is best possible up to the c-term (for large n). Its proof is 
purely combinatorial, and employs results on kernels of sunflowers. 

1. Introduction. Let n, k, r, t, s be positive integers and let X be an n-element 
set. We denote by (x) the collection of all r-element subsets of X. 

Suppose that n < (kr - 1) + (t - 1)(k - 1) and write X = Xo U* U Xt-1, where 

IXol kr - 1, JX11 = * = IXt-11 = k - 1. Define 

jr0= ?l i= F (X) F nxi#0}o i=11 ... it -1. 

It is easy to check that none of these families contains k pairwise disjoint members, 
moreover, So U*. U . t-. = (X). 

Our first result states that such a partition does not exist for n > (kr- 1)+ 
(t - 1)(k - 1). 

THEOREM 1. 1. Suppose that n > kr + (t -1) (k-1) and (X ) is partitioned into 
t families. Then one of the families contains k pairwise disjoint r-element sets. 

For k = 2 the statement of the theorem was conjectured by Kneser [Kn] and 
proved by Lovasz [L1] (cf. also [BA]). The validity of Theorem 1.1 was conjectured 
by Erd6s [E] in 1973 (cf. also [Gy]). The case r = 2 was proved by Cockayne and 
Lorimer [CL] and independently by Gyarf"s [Gy]. The case t = 2 was proved in 
[AF]. 

Theorem 1.1 immediately implies the following extension. 

COROLLARY 1. 2. Suppose k1 > ... > kt > 2 and n > kir + ?2<i<t(ki -1). 
If (X) = Y1 U ... U Ft, then for some i, 1 < i < t, the family 1i contains ki pairwise 
disjoint members. 
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PROOF. Let Y2, ... , Yt be pairwise disjoint sets which are disjoint from X, with 
cardinality IYiI = ki - ki. Set X' = X U Y2 U ...U Yt; = Y and i' = U{F E 

(x'): Fn Yi $ 0}, i = 2, ... ,t. Now an application of Theorem 1.1 to (x ) gives 
the result. D 

Barany suggested the following problem. What is the maximal number m so 
that whenever (x) is partitioned into m classes one of the classes contains k r-sets 
with all pairwise intersections of size less than s. The case s = 1 is settled by 
Theorem 1.1. 

Suppose r > s > 2. Let S C (X) be such that for every H E (X) there exists 
S E S with S c H, i.e., S contains no independent set of size r. The minimum 
possible size of such S is denoted by T(n, r, s). The problem of determining T(n, r, s) 
was raised by Turan [Ti, T2] who settled the case s = 2. In that case the only 
extremal graph is the disjoint union of r - 1 complete graphs of nearly equal sizes. 
In the general case the exact value of T(n, r, s) is unknown. Katona, Nemetz, and 
Simonovits [KNS] proved that T(n, r,,s)/( ) is monotone increasing as a function 
of n and thus t(r, s) = limnO, T(n, r, s)/(n) exists. However, the value of t(r, s) is 
unknown for all r > s > 3. 

Let S C (X), ISI = T(n,r,s), and assume that each H E (X) contains a 
member of S. Partition S into m = [T(n, r, s)/(k - 1)1 subfamilies S1,..., Sm with 
SiI < k - 1. Define Fi to be the collection of those r-subsets of X which contain 

some member of Si, i.e., 

{i' (r) 3 S E Si, S c F i=1,..., m. 

One readily checks that 71 U... U Fm = (X) and none of the Fi contains k sets 
whose pairwise intersections have less than s elements. 

Our next result shows that this is essentially best possible. 

THEOREM 1.3. Suppose (x) = 1 U ... U m and for all i, 1 < i < m, and for 
arbitrary k sets Fl, . . ., Fk E Yi there exist 1 < a < b < k so that IFa n FbI > S. 

Then for r,s, k fixed and n -- oo. 

(1) m > (1 - o(1))T(n, r, s)/(k - 1). 
Also if s = 2 and n > no(k, r), then 
(2) m > T(n, r, 2)/(k - 1). 

The case k = 2 of the above theorem was proved by Frankl [F2] (cf. also [FF]). 
The proof of Theorem 1.1 is topological and uses some of the ideas of [Li], 

whereas the proof of Theorem 1.3 is purely combinatorial. 
The paper is organized as follows. In ?2 an outline of the proof of Theorem 1.1 

is given. The actual arguments are contained in ??3 and 4. The proof of Theorem 
1.3 is given in ??5 and 6. ?7 contains some final remarks. 

2. An outlined proof of Theorem 1.1. The basic ideas in the proof of 
Theorem 1.1 are similar to those used by Lovasz in [Li], but there are several 
additional complications. We outline the arguments below and then discuss each 
step in full in the following two sections. 

First it is useful to reformulate Theorem 1.1 in terms of the chromatic number 
of the Kneser hypergraph. 
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Let Gn,k,r,, be the k-uniform Kneser hypergraph defined as follows. The vertices 
of G are all the r-subsets of {1, 2, .. ., n}, and a collection of k vertices forms an 
edge if each pair of the corresponding r-sets have intersection of cardinality smaller 
than s. Put also Gn,k,r,l = Gn,k,r. Theorem 1.1 is equivalent to the statement that 
if n > (t - 1)(k - 1) + kr, then Gn,k,r is not t-colorable. 

For any k-uniform hypergraph H = (V, E), define a simplicial complex 0(H) as 
follows: the vertices of 0(H) are all the lElk! ordered k-tuples (v1,V2, ... ,ivk) of 
vertices of H, where {Vl,... , Vk} E E. A set of vertices (vl,... ,v )ii of 0(H) 
forms a simplex if there is a complete k-partite subgraph of H on the (pairwise 
disjoint) sets of vertices V1, V2,..., Vk such that v3X E V3 for all i E I and 1 < j < k. 

Recall that for s > 0, a topological space T is s-connected if for all 0 < I < s, 
every continuous mapping of the i-dimensional sphere SI into T can be extended 
to a continuous mapping of the ? + 1-dimensional ball B'+' with boundary S' into 
T. Thus 0-connected means arcwise connected, and 1-connected means arcwise 
connected and simply connected. It will be convenient to agree that (-1)-connected 
means nonempty, and that every space is s-connected for all s < -1. Theorem 1.1 
now follows from the following three assertions. 

PROPOSITION 2.1. For any k-uniform hypergraph H, where k is an odd prime, 
if 0(H) is ((t - 1)(k - 1) - 1)-connected, then H is not t-colorable. 

PROPOSITION 2.2. C(Gn,k,r) is (n - kr - 1)-connected. Thus if n > (t - 1). 
(k - 1) + kr, then it is ((t - 1)(k - 1) - 1)-connected. 

PROPOSITION 2.3. The validity of Theorem 1.1 for (r, t, k) and (r' = (t - 1). 
(k - 1) + kr, t, k') implies its validity for (r, t, kk'). 

Proposition 2.1 appears interesting in its own right. It probably holds for every 
positive integer k. If we replace Lemma 3.1 below by the Borsuk-Ulam theorem 
then the proof given in ?3 shows its validity for k = 2. (This, in fact, easily follows 
from Lovasz' regult [Li].) At the moment we cannot prove Proposition 2.1 for 
nonprime k. 

Propositions 2.1 and 2.2 imply the assertion of Theorem 1.1 for every odd prime 
k. By Lovasz's proof of the Kneser conjecture [Li], Theorem 1.1 holds for k = 2. 
Thus, by Proposition 2.3, Theorem 1.1 holds for all r, t, k. 

Proposition 2.1 is derived in ?3 from an extension, due to BaraIny, Shlosman, 
and Sziics [BSS], of the well-known Borsuk-Ulam theorem of algebraic topology. 

Proposition 2.2 is proved in ?4 using several standard results from topology. 
We conclude this section with the (easy) proof of Proposition 2.3. 
PROOF OF PROPOSITION 2. 3. Suppose n > (t-1)(kk'-1) +rkk' and let c be a 

coloring of the r-subsets of N = {1, 2,.. . ., n} by t colors. Put r' = (t - 1)(k - 1) +rk 
and define a coloring c' of the r'-subsets of N by t colors as follows. Let A be an 
r'-subset of N. By Theorem 1.1 (for r, t, k) A contains k pairwise disjoint r-sets of 
the same color. Color A by the first such color. Notice that n > (t - 1) (k' - 1) + k' r' 
and hence by Theorem 1.1 (for r', t, k') there are k' pairwise disjoint r'-subsets of N 
having the same color. Each of these subsets contains k pairwise disjoint r-subsets 
used in defining its color, and all these k' * k pairwise disjoint r-sets have the same 
color. O 
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3. The chromatic number of H and the connectivity of C(H). We begin 
by stating a result of Barany, Shlosman, and Sziics from [BSS]. Let k be an odd 
prime, and suppose m > 1. Let X = Xm,k denote the CW-complex consisting 
of k disjoint copies of the m(k - 1)-dimensional ball with an identified boundary 
Sm(k-l)-1. We define a free action of the cyclic group Zk on X by defining w, the 
action of its generator, as follows (see [Bou, 13]). Represent Sm(k-1)-l as the set 
of all m by k real matrices (aij) satisfying 

k 

Eaij=O foralll<i<m and Ea?= 1. 
j=l i,j 

Define now w(aij) = (ai,j+i), where j+1 is reduced modulo k. Thus w just cyclically 
shifts the columns of a matrix representing a point of Sm(k-l)-1 Trivially, this 
action is free, i.e., w(x) :$ x for all x E Sm(k-l)-1. The map w is extended from 
Sm(k-1)-l to Xm,k as follows. Let (y,r,q) denote a point of Xm,k from the qth 
ball with radius r and Sm(k-')-l-coordinate y. Then 

w(y, r, q) = (wy, r, q + 1), 

where q + 1 is reduced modulo k. One can easily check that w defines a free Zk 
action on X = Xm,k. 

The following result of Barany, Shlosman, and Sziics is crucial for the proof of 
Proposition 2.1. 

LEMMA 3. 1 [BSS]. For any continuous map h: X -- Rm there exists an x E X 
such that h(x) = h(wx) = ... = h(wk-lx). 

Let H be a k-uniform hypergraph and let C(H) be the associated simplicial 
complex defined in ?2. Define a free Zk action on C(H) by defining -y, the action of 
its generator, as follows. For a vertex (vl, V2,... , Vk) of C(H), -y(V1, V2,... , Vk) = 

(V2,... , Vk, vi). Over the other points of C(H), -y is extended by linearity. 
Let X and Y be topological spaces and assume that Zk acts freely on both. Let 

a and a denote the action of the generator of Zk on X and Y, respectively. We say 
that a continuous mapping f: X -- Y is Zk-equivariant if f o a = 30 of (cf. [Bou, 
Chapter 13]). 

LEMMA 3.2. If C(H) is (m(k - 1) - l)-connected, then there exists a Zk equi- 
variant map f: Xm,k > C(H). 

PROOF. Given an equivariant cell subdivision of X = Xm,k we construct f 
by induction on the dimension of the cells. (We note that we can, using certain 
circulant matrices, explicitly define such a cell subdivision (containing precisely k- 
cells, i.e., one orbit, of each dimension i, 0 < i < m(k - 1) = dimX), but this is 
not required here.) 

We first choose a 0-cell (= vertex) from each orbit of 0-cells, define f on these 
vertices arbitrarily, and extend the map to a Zk-equivariant map of all vertices. 
Assuming f has already been defined on the (i- 1)-skeleton of X (0 < i < m(k-1)), 
define it on the i-cells as follows. Choose a cell from each orbit of the i-cells. (Note 
that from the freeness of the action it follows that each orbit of i-cells contains 
k members.) Now f is defined on the boundary of these cells and thus, since X 
is (i - 1)-connected it can be extended continuously to those chosen i-cells. Now 
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extend f to a Zk-equivariant map of all the i-cells. This completes the proof of the 
lemma. D 

Let Y = R(t-1)(k-1) - {o} be represented by the set of all t by k real matrices 
(aij) satisfying 

k 

Eaij=O foralll<i<t, 
j=l 

t 

Eaij=O forall1<j<k and Ea?.>O. 
i=1 i,j 

Clearly, there is a free Zk action on Y; its generator, f, maps (aij) E Y to 
(ai,j+i) E Y, where j + 1 is reduced modulo k. 

LEMMA 3.3. If H is t-colorable, then there exists a Zk-equivariant map g: C(H) 
Y. 

PROOF. For a real vector u of length k and for 1 < i < t, let Rj(u) denote 
the t by k matrix whose ith row is u and all other rows are the zero vector. If 
u = (U1, U2, ... ., Uk) define ou = (uk, u1, . . ., uk-1). Let z be the following vector 
of length k; z = (1, -1,0, ... ,O). Notice that Ek-1 aiZ = 0 and this is the only 
nontrivial linear relation between the vectors o z. 

Let H = (V, E) be a t-colorable hypergraph and let c: V -- {1, 2,... , t} be a 
proper t-coloring of it. We define g: C(H) -- Y by defining it on the vertices of 
C(H) and extending it by linearity. For a vertex (v, V2,... ,Vk) of C(H), put 

k 

(3.1) g(v,v2,. . ., Vk) = ZRc(vi)(oz). 

Notice that since {V,v.... , Vk } is an edge of H and c is a proper coloring, not all the 
c(vi)'s are the same and thus the right-hand side of (3.1) is a nonzero matrix. One 
can easily check that this matrix has zero row and column sums and thus belongs 
to Y. It is not difficult to check that g is equivariant, i.e., g o -y(x) = a o g(x) for all 
x E C(H). This easily holds for all vertices x of C(H) and hence for all x E C(H). 
It remains to show that g(x) E Y for all x E C(H). Clearly g(x) is a t by k matrix 
with zero row and column sums. We must check that it is a nonzero matrix. The 
point x is a convex combination EiE> Ai(vi , ... I, vi) of the vertices of some face of 
C(H), E Ai = 1, Ai > 0 for all i E I. By definition there are k pairwise disjoint 
subsets V1, . . ., Vk of vertices of H such that v. E V3 for all 1 <j < k and i E I, 

and all the H>1 1 VjI edges (wl,. . . ,WI), where wj E Vj are edges of H. Since c is 
a proper coloring of H, this means that every color is missing from at least one of 
the Vj's. By definition 

k 

g(x) = ZAi E Rc(vi) (&iz). 
iEI j=1 

We claim that the c(v,)th row of this matrix is nonzero for each i E I and 1 < i < k. 

Indeed, this row is a combination, with positive coefficients, of the vectors aiz for 
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all j's such that c(v) appears as a color of some vertex in Vj. These are not all the 
ojz's and hence such a combination cannot be zero. This completes the proof. D 

To prove Proposition 2.1 we need one more observation. 

LEMMA 3.4. Let Y - R(t-1)(k-1) - {oz} and let d be as above. Then there is 
a continuous map h: Y Rt-1 such that no y E Y satisfies h(y) = h(l3y) = = 
h(,k-ly). 

PROOF. For y = (aij)1<i<t,1<j<k, y E Y, define h(y) = (ail),<i<t. Clearly h 
maps Y into a t- 1 dimensional space (since EtI1 ai1 = 0 for each y = (aij) E Y). 
If y = (aij) E Y and h(y) = h (3y) = = h(/3k-ly), then ai1 = ai2 = =aik 

for all 1 < i < t, and since ,j = aij =0 we conclude that aij = 0 for all i, j, 
contradicting the definition of Y. This completes the proof. O 

PROOF OF PROPOSITION 2.1. Let k be an odd prime and let H be a k 
uniform hypergraph whose associated simplicial complex C(H) is ((t- 1)(k- 1) -1)- 
connected. We must show that H is not t-colorable. Suppose H is t-colorable. 
Since C(H) is ((t - 1)(k - 1) - 1)-connected, Lemma 3.2 implies that there exists 
an equivariant f: Xt_l,k -* C(H). By Lemma 3.3 and the assumption that H is 
t-colorable, there exists an equivariant g: C(H) -- Y = R(t-1)(k-l) - {o}. Finally, 
let h: Y -k Rt-1 be as in Lemma 3.4 and put F = hog of: Xtl1,k Rt- 1 

F is clearly continuous. We claim that there is no x E X = Xt_l,k such that 
F(x) = F(wx) = ... = F(wk-lx). Indeed, if x E X satisfies the above, then by the 
equivariance of f and g, y = g o f(x) would satisfy h(y) = h(l3y) = ... = h(fk-ly), 

contradicting Lemma 3.4. Thus the claim holds, and this contradicts Lemma 3.1. 
Therefore our assumption was false and H is not t-colorable, as claimed. L 

4. The connectivity of C(Gn,k,r). Let G = Gn,k,r be the k-uniform Kneser 
hypergraph defined in ?2, and let C(G) be the corresponding simplicial complex. 
The vertices of C(G) are ordered k-tuples (R1,. ..,Rk) of pairwise disjoint r-sets 
of N = {1, 2, ... , n}, and a set of such k-tuples (Ri, R, .. ., R')iEI forms a simplex 
if there exists an ordered partition of N into k pairwise disjoint parts N = N, U 
* U Nk, and R; C Nj for all i E I and 1 < j < k. In this section we show that 
C(G) is (n - kr - 1)-connected. We need a few known results from topology. For a 
(finite) family of sets 7, the nerve of 7 is a simplicial complex whose vertices are the 
members of F of F and a set (Fi)tei of members of F forms a face ifniE, fi F4 0. 

The following is a classical result (cf. [Bo, BKL]). 

LEMMA 4.1 (NERVE THEOREM). Let C be a simplicial complex and N the 
nerve of the family of its maximal faces. Then N and C are homotopy equivalent 
(and thus have the same connectivity). 

LEMMA 4.2. Let C0 and C2 be two simplicial complexes. If C1,C2 are both s- 
connected, and their intersection C0 nC2 is (s- 1)-connected, then the union C0 UOC2 
is s-connected. (Recall that by definition (-1)-connected means nonempty.) 

PROOF. This well-known result follows from the Mayer-Vietoris long exact se- 
quence together with the Van Kampen and Hurewicz theorems. It also follows from 
Lemmas 4.8 and 4.9 in [BKL]. 



THE CHROMATIC NUMBER OF KNESER HYPERGRAPHS 365 

COROLLARY 4.3. Let Cl,C2, .. .,Cm be simplicial complexes. If the intersec- 
tion of any family of 1 > 1 of them is (s - 1 + 1)-connected, then Cl U C2 U* U Cm 
is s-connected. 

PROOF. We use induction on m. For m = 2 this is Lemma 4.2. Assuming 
the assertion holds for m - 1 (and every s) we prove it for m (m > 2). By the 
induction hypothesis C- C U ... U Cmr- is s-connected, and so is Cm. Now 
c n cm = (cl n Cm) u u (Cm-, n Cm) is a union of m - 1 (s - 1)-connected 
simplicial complexes, the intersection of any 1 of which is s - l = ((s - 1) - 1 + 1)- 
connected. Thus, by the induction hypothesis, C n Cm is (s - 1)-connected and by 
Lemma 4.2 C U Cm = Ci U ... U Cm is s-connected. This completes the induction 
and the proof. D 

For nonnegative integers n, ri, r2, .. ., rk, let C = C(n, ri, .1. , rk) denote the 
following simplicial complex. The vertices of C are all the ordered partitions 
(N, I .. ,Nk) of N = {1, ...,n} into k parts such that INjI > rj for 1 < j S k. A 
family (N,... ,Nk)iEI of such partitions forms a face if I ni N1j' > rj for each 
1 < j < k. 

LEMMA 4.4. C= C(n,rl,...,rk) is (n- Ek=Xr -1)-connected. 

PROOF. The lemma clearly holds for n < E rk . For the general case we 
prove it by induction on n. For n = 1 the result is trivial. Assuming it holds for 
all n' < n we prove it for n. If r1 = r2 = ... = rk = 0, then every set of vertices 
of C = C(n, rl,.. ., rk) forms a face and C is I-connected for every l. Thus we can 
assume, without loss of generality, that ri > 0. For 1 < i < n, let Ci denote the 
induced subcomplex of C on the set of all vertices (N,.... , Nk) of C with i E N1. 
Clearly C =C1 U C2 ... U C,. Put s = n - _ rj -1. Consider the intersection 
of I Ci-s. If I < rl, it is isomorphic to C(n - 1,r, -1, r2,.. .,r) and is, by 
the induction hypothesis, s-connected and hence certainly (s - I + 1)-connected. 
If I > r1 this intersection is isomorphic to C(n - 1,0, r2,... , rn) and is, by the 
induction hypothesis, n - 1 _ Ek=2 rj -1 = s -1 + ri > (s - I + 1)-connected. 
Therefore, by Corollary 4.3, C is s-connected. This completes the induction and 
the proof. D 

PROOF OF PROPOSITION 2.2. One can easily check that the nerve of max- 
imal faces of C(Gn,k,r) is C(n,rl,r2,. ... ,rk), where rj = r for 1 < j < k. The 
proposition thus follows from Lemma 4.1 and Lemma 4.4. Cl 

5. Families of r-sets without k members with mutually small intersec- 
tion. To avoid long sentences like the title of this section, let us say that r has 
property P(k, s) or shortly Yr has P(k, s) if there are no sets F1, F2, ...Fk E F 
satisfying IFi nFjl <s for 1 <i <j< k. 

We will be only concerned with the case when F c (X), i.e. when . is r-uniform 
and IXI = n > no(k, r, s). Then P(k, s) makes sense only for 1 < a < r, which we 
suppose. Also, we assume that k > 2. 

The simplest way of constructing .T having P(k, s) is the following. Let A1,..., 
Al be distinct s-element subsets of X. Define 7(A1,.. .,Al) = {F E (X): 3i, 
1 < i < l, A c F}. It is easy to check that F(A1,... ,Al) has P(k, s) whenever 
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1 < k - 1 and 

(k-l (n s)( 2 r)(n s-1) < lI (Al ..Ak_1)1 < (k-1) (n s) 

It is not hard to see that I F(A1, ... , Ak_l)I is maximal if A1, .. ., Ak-, are pairwise 
disjoint. Hajnal and Rothschild [HR] proved that this provides the maximum size 
of any . c (X) having P(k, s) for n > no(k, r, s). 

Let us mention that the special case k = 2 is the Erd6s-Ko-Rado theorem [EKR]. 
We need a strengthening of the Hajnal-Rothschild theorem. A similar strength- 

ening of the Erdos-Ko-Rado theorem was given in [F1]. 

THEOREM 5.1. Suppose 7 C (X) and 7 has property P(k,s). Then there 
exists an 1, 0 < 1 < k, and a family A = {Ai, ... , Al} of s-element sets so that 

I~-.1(Ai,..,Ai)I= I{F c: t i,AiCF} Z ( - i )i!(k - 1) r ( 
i-s+1 \ 

Moreover, if 1 = k - 1, then 7 c (Al,...,Ak-1) holds. 

To prove Theorem 5.1 we introduce the family 3*. Let us define b(j) 
(k-l)r+1 forj <s and b(s+i) = (k-l)r'+1 +lfor 1 <i < r-s. Let Y* consist 
of those subsets G of X for which one can find b = b(IGI) members F1,.. ., Fb of 
7 such that Fi n Fj = G for 1 < i < j < b. The collection {F1, .. , Fb} is called 
a sunflower with center G. The sets Fi - G are the petals. Note that they are 
pairwise disjoint. 

Define B as the family of inclusionwise minimal members of .r U P*, i.e. 

B = {B E .UY *: t B' E 7UY_*,B' C B}. 

Note that B is a basis for ., i.e., for every F E 7 there exists B E B with B C F. 

PROPOSITION 5.2. TU P (and hence B) has P(k, s). 

PROOF. Suppose for contradiction that F1,..., F1, Gl+1,...,Gk have pairwise 
intersections of size strictly less than s, F1 .. ., Fl E 1, Gl+1, ... , Gk E P*, and I is 
maximal with respect to these assumptions. Since .T has P(k, s), I < k holds. 

By definition G1+1 is the center of a sunflower {F1,... , Fb} where b > (k - l)r, 
Fi E F. Since IF, U ... U Fl U G0+2 U ... U GkI < (k - 1)r, this set cannot intersect 
all b pairwise disjoint petals Fi - G1+1 of the sunflower. Say (F1 U... U Fl U G1+2 U 

U Gk) n (Pj - G1+l) 54 0. 
Set F1+1 = Fj and verify that F1,... , F1+1, G1+2,... ., Gkhave pairwise intersec- 

tion of size strictly less than s, in contradiction with the maximal choice of 1. [1 
Let bi denote the number of i-element members of B. The next proposition 

clearly implies Theorem 5.1. 

PROPOSITION 5.3. (i) bi = 0 for i < s, 
(ii) bs <k, 
(iii) bi < i!(k - 1)iri(i-8+1) for s < i < r. 

PROOF. To prove (i) note again that if G E B but G f ., then G is the center 
of a sunflower of size at least (k - 1)r + 1 > k, i.e., there exist F1,... , Fk E .F 
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satisfying Fi n Fj = G and thus IFi n FjI = IGI for 1 < i < j < k. Since Y has 
P(k, s), IGI > s, i.e., bi = 0 for i < s. 

By Proposition 5.2, B has P(k, s), thus (ii) holds. To prove (iii) we are going to 
show the i-element members of B form no sunflower of size b(i - 1). 

Suppose for contradiction that Bl,... , Bb(i1) are i-element sets in B which 
form a sunflower with center C. 

We are going to define sets F1,... , Fb(i1) E i. inductively so that Fi n Fj = 

Bi n Bj holds for 1 < i < j < b(i - 1). Then {F1, . .. ,Fb(i_1)} is a sunflower with 
center C implying C E i*. However, C C B1 E B, a contradiction. 

So let us suppose that Fjl was defined for j' < j, j < b(i - 1), Bj is the center of 
a sunflower {F1, .. . ,Fb(i) } with F,, C . Consider A = F1 U .. *UFj_1UBj+1U ... U 
Bb(i-l) Then JAI < b(i - 1)r < b(i). Therefore among the b(i) pairwise disjoint 
petals F, - Bj there is one, say F, - Bj, which is disjoint to A. Set Fj = F, and 
verify that F1, .. ., Fb(i- ) fulfill the requirements. 

Now the bound (iii) is a direct consequence of a classical result of Erd6s and Rado 
[ER], which says that any family of more than i!(b - 1)i distinct i-sets contains a 
sunflower of size b. O 

PROOF OF THEOREM 5. 1. Set 1 = b, and let A = .1, . , Al} be the collection 
of s-element members of B. There is a last thing to check, namely that b, = 

k- 1 implies bi = 0 for i > s. In fact, if B E B, IBI = i > s, then the sets 
A1,.. ., Ak-, and B have pairwise intersections of size strictly less than s (Ai t B!) 
in contradiction with Proposition 5.2. [1 

6. The chromatic number of the generalized Kneser hypergraphs. Sup- 
pose now (X) is colored by t colors, i.e., (X) = 71 U .. U Ft, in such a way that 
none of the .i's contains an edge of Gn,k,r,s. That is i has property P(k, a) for 
i - 11 . t. 

Apply Theorem 5.1 to .i to obtain a family AM consisting of at most k - 1 s- 
element subsets of X and so that "most" of the members of .' contain at least one 
of these s-sets. 

Set A () U ... U A(t). Then IAI < (k- 1)t. 
Let E be an arbitrary positive number. We have to show that for n > no (k, r, a, E) 

one has t > (1 - E)T(n, r, s)/(k - 1). 
Suppose the contrary. Then IAl < (k - 1)t < (1 - ?)T(n, r, s). By the theory of 

supersaturated graphs (cf. Theorem 1* in [ES] or Theorem 3.8 in [FR]) there are 
at least E1 nrr-element subsets of X which contain no member of A. Let 9 be the 
collection of these sets, i.e., 

5={GE(r): 7 AcEAAcG}. 

However, Theorem 5.1 guarantees that for n > no (k, r, s) 

19 n Yil < 2 
n - 

_ 1i) (s + 1)!(k - 1)8+lr2(8+1) 

Thus 
t 

in 
r < 191 < Z 19n Ail < tnr-8-12(s + 1)!(k - 1)8+lr2(s+l)/(r - s - 1)!. 

i=l1 
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This yields t > E2n8?+, where 62 is a positive constant, depending only on k, r, s, 
and E. Consequently, we obtained t > T(n, r, s) for n > no(k, r, s), a contradiction, 
which concludes the proof of (i). 

To prove (ii) suppose s = 2. Let us first recall Turan's theorem. Denote T(n, r, 2) 
by T(n, r), i.e., T(n, r) is the minimum number of edges in a graph on n vertices 
and without an independent set of size r. 

Suppose n = ni +** + nrl, 

Let T (n, r) be the graph on n vertices which is the vertex disjoint union of r - 1 
complete graphs of respective sizes n1,.. ., nr-1. 

TURAN'S THEOREM [Ti]. Suppose 9 is a graph on n vertices and with no 
independent set of r vertices. Then I ̂  I > IT(n, r)l with equality holding if and only 
if 5 is isomorphic to T (n, r). 

Turans theorem clearly implies 

T(n, r) = I7T(n, r)I =(i1+ 0(1))() ) | (r~~r- l 2) 

Consequently, 

T(n,r) - T(n,r+ 1)- r(r 1) n2) 

Thus for n > no(k, r) the first part of Theorem 1.3 implies IAI > T(n, r + 1). 
We are going to use the following theorem of Bollobas. Let us denote by m(n, e, r) 

the minimum number of independent sets of size r in a graph on n vertices and e 
edges. 

THEOREM 6. 1 [B]. Suppose T(n, r) > e > T(n, r + 1). Then 

(6.1) m(n, e, r) > T(n,r)-T)(nr+1) Lr 

If IAl > T(n,r), then t > T(n,r)/(k - 1) follows. We thus assume A l < T(n,r). 
Let us renumber the families i, ... , Ft so that for some number to, 0 < to < t, one 
has lAIl = k - 1 if and only if i < to. Then IAl = = lA(1 I < (k - 1)t - (t - to). 
Therefore IAl < T(n, r) - (t - to). Let us define 

R-={RE (A): AEA,AcR}. 

In view of (6.1) one has 

(6.2) IRI > (t - to)[nJr/(T(n, r) - T(n, r + 1)) > (t - to)nr-2r-r. 

On the other hand R C Uit=to+0(Yi - Yi(A(i))). Applying Theorem 5.1 with sa- 2 
gives 

1 ?1 < (t - to)12(k - 1)3r6 ( 3) for n > no(k, r), 
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which contradicts (6.2) and thus concludes the proof of the theorem. D 
REMARK. From the proof it is clear for large n that t = T(n, r)/(k - 1) can 

hold only if to = t and A is the edge set of the corresponding Turain graph, i.e., the 
disjoint union of r - 1 complete graphs with almost equal sizes. That is, there is 
basically a unique coloring. 

7. Concluding remarks. (1) Notice that both Theorem 1.1 and Corollary 
1.2 are best possible for all possible values of parameters. Theorem 1.3(ii) is best 
possible only for large n and the e-term in Theorem 1.3(i) is probably unnecessary. 
It would be interesting (but appears difficult) to find the exact chromatic number 
of Gn,k,r,s for all possible n, k, r, s. 

(2) Lovasz's proof for the Kneser conjecture supplied some other applications 
(see [L2]). It seems that our proof of Theorem 1.1, and especially Proposition 2.1, 
might yield some further consequences besides Theorem 1.1. It turns out that a 
very similar method can be used to prove the following result conjectured in [AW] 
(see also [GW]). 

Let N be an opened necklace consisting of nai beads of color i, 1 < i < k. 
Then it is possible to cut N in at most (n - 1)k places and to divide the resulting 
pieces into n classes, such that each class will contain precisely ai beads of color i, 
1 < i < k. This will appear in [Al]. 

(3) As shown in ?1, if n = (t - 1)(k - 1) + kr - 1, then there is a coloring of the 
r-subsets of an n-element set such that no k pairwise disjoint r-sets have the same 
color. One can easily check that this coloring is not unique, in fact there are many 
optimal colorings. This is in sharp contrast with Theorem 1.3. 
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